Государственное бюджетное образовательное учреждение среднего профессионального образования Колледж связи № 54

Экспертное заключение:			Утверждено: Методическим советом ГОУ СПО Колледжа связи № 54			
«»	2013 года	« <u></u>	»		2013 года	
Разработала: <u>Бо</u>	бкова О.Н преподаватель		смотрено: ственнонау	на ПЦК чных дисци	иплин	
« »	2013 года	«	»		2013 года	

Контрольно-измерительные материалы по дисциплине «Математика» по специальности 210709 «Многоканальные телекоммуникационные системы»

базовой подготовки

для обучающихся 2 курса

Пояснительная записка

Согласно учебного плана Колледжа связи 54 и рабочей программы в качестве промежуточной аттестации по дисциплине «Бухгалтерский учет» для специальности 210709 «Многоканальные телекоммуникационные системы» в третьем семестре предусмотрен зачет. ПЦК естественнонаучных дисциплин утверждена форма зачета в виде теста.

Настоящие материалы разработаны с учетом рабочей программы, составленной на основе федерального государственного образовательного стандарта (ФГОС) среднего профессионального образования.

База вопросов к тесту состоит из 120 заданий. Тест состоит из 30 вопросов в каждом варианте. Каждый вопрос имеет 4 варианта ответа и содержит один правильный ответ.

Критерии оценки:

«Зачет» ставится в том случае, если количество правильных ответов — не менее 18 (что составляет 60% от общего количества заданий). В противном случае — студен получает «незачет»

Вариант 1.

- 1. Если значения предела функции и самой функции в данной точке равны, то функция в этой точке называется
 - а) возрастающей
 - б) разрывной
 - в) непрерывной
 - г) монотонной
- 2. Выберите правильное утверждение:
 - а) значение предела функции не единственное
 - б) постоянный множитель нельзя выносить за знак предела
 - в) постоянный множитель можно выносить за знак предела
 - г) предел постоянной величины равен нулю
- 3. Значение предела $\lim_{x\to 2} (x^2+1)(2x-3)$ равно
 - a) -5
 - б) 7
 - в) 5
 - г) -7
- 4. Найти предел функции $\lim_{x\to 1} \frac{2x^2-2}{x-1}$
 - a) -4
 - б) 4
 - **B**) 0
 - L) ∞
- 5. Действие нахождения производной функции называется
 - а) дифференцирование
 - б) потенцирование
 - в) логарифмирование
 - г) интегрирование
- 6. Укажите формулу для нахождения производной экспоненты

a)
$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}, \alpha \in R$$

6)
$$(a^x)' = a^x \ln a$$
, a>0, a\neq 1

$$\mathbf{B})\left(e^{x}\right)'=e^{x}$$

r)
$$(\log_a x)' = \frac{1}{x \ln a}, a > 0, a \neq 1$$

- 7. Укажите верную формулу
 - a) $(u \cdot v)' = u' \cdot v'$
 - σ) $(u \cdot v)' = u'v + u \cdot v'$
 - B) $(u \cdot v)' = u'v u \cdot v'$
 - $\Gamma) (u \cdot v)' = u'v' + u \cdot v$
- 8. Чему равно значение производной функции $y = 5x^3 + 7$ в точке x=2
 - a) 30
 - б) 67
 - в) 60
 - г) другой ответ

9. Найти вторую производную функции
$$y = \frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2}$$

a)
$$x^3 + x^2 + x$$

6)
$$3x^3 + 2x^2 + x$$

B)
$$3x^2 + 2x + 1$$

$$\Gamma$$
) $4x^3 + 3x^2 + 2x$

10. Производная функции
$$f(x) = \frac{3x+2}{5-2x}$$
 имеет вид

$$a) \frac{1}{(5-2x)^2}$$

$$6) \frac{-12x+11}{(5-2x)^2}$$

B)
$$\frac{19}{(5-2x)^2}$$

11. Производная функции
$$y = \sin(4x - \frac{\pi}{6})$$
 равна

a)
$$y = \cos(4x - \frac{\pi}{6})$$

$$6) \quad y = 4\cos(4x - \frac{\pi}{6})$$

B)
$$y = 4\sin(4x - \frac{\pi}{6})$$

$$\Gamma$$
) $y = \cos 4x$

12. Дана функция
$$f(x) = -\frac{x^3}{3} + \frac{x^2}{2} + 2x - 3$$
. Найти ее критические точки

- a) 4; -1
- б) -1; 2
- в) -3; 1
- г) -2; 3

13. Знак второй производной f''(x) меняется по схеме

X	(-∞;-1)	(-1;1)	(1;7)	(7;+∞)
f'(x)	-	+	+	-

На каких промежутках график f(x) выпуклый

- a) (-1;1); (1;7)
- 6) $(-\infty;-1); (7;+\infty)$
- B) (-1;1); $(7;+\infty)$
- Γ)) (- ∞ ;-1); (1;7)

14. Найти промежутки возрастания функции $f(x) = x^3 - 6x^2 + 5$

- a) $(-\infty;0) \cup (4;+\infty)$
- б) (0;4)
- B) (2;+∞)

$$\Gamma$$
) $(-\infty;-2) \cup (2;+\infty)$

- 15. Если при переходе через критическую точку f'(x) меняет знак с «+» на «-», то это точка
 - а) минимума
 - б) перегиба
 - в) максимума
 - г) разрыва
- 16. Пусть $f(x) = 3x^4 4x^3 + 1$. Тогда в точке $x_0 = 0$ имеется:
 - а) ноль функции f(x)
 - б) минимум функции f(x)
 - в) максимум функции f(x)
 - г) точка перегиба графика функции f(x)
- 17. Пусть $f(x) = \sin x$; $F_1(x) = -\cos x$; $F_2(x) = -\cos x + 5$. Тогда первообразной для функции f(x) является:
 - а) только F_1
 - б) только F_2
 - в) F_1 и F_2
 - г) ни одна из F_1 и F_2
- 18. Найти интеграл $\int (x^2-3)dx$

$$a)^{\frac{x^2}{2}} - 3x + c$$

$$6)\frac{x^3}{3} - 3x + c$$

$$_{\rm B})^{\frac{x^2}{3}} - 3 + c$$

$$\Gamma) \frac{x^3}{3} - 3x$$

- 19. Найти интеграл $\int cos 3x dx$
 - a) sin3x + c

$$6)\frac{1}{3}\cos 3x + c$$

$$\mathbf{B})\frac{1}{3}\sin 3x + c$$

$$\Gamma$$
) $\frac{1}{3}sinx + c$

- 20. Найдите интеграл $\int_2^3 4x dx$
 - a) 6
 - б)4
 - в)2
 - г)другой ответ
- 21. Вычислить площадь фигуры, ограниченной линиями $y=x^2$; y=0; x=1; x=3
 - a) 8
 - $6) 8\frac{2}{3}$
 - в) 9
 - г) другой ответ

	a) 2cosxsinx
	6) 2sin2x
	B) $\cos 2x$
	г) другой ответ
23.	Множество, состоящее из всех элементов, которые принадлежат хотя бы одному из двух
	данных множеств, называется
	а) пересечением множеств
	б) объединением множеств
	в) разностью множеств
	г) дополнением множества
24.	Найти разность множеств $A \setminus B$, если $A = \{1,2,3,4\}$; $B = \{0,1,2\}$.
	a) $A \setminus B = \{3, 4\}$
	6) $A \setminus B = \{0,3,4\}$
	B) $A \setminus B = \{0,1,2\}$
	$r) A B = \{1,2,3\}$
25	Вычислить определённый интеграл $\int_{-\infty}^{e} \frac{dx}{x}$
	a) e $\int_{1}^{3} x$
	6) 1
	$\mathbf{B}) \mathbf{e}^2$
	r) 0 $r^2 + r - 6$
26.	Вычислить $\lim_{x\to 2} \frac{x^2 + x - 6}{x - 2}$
	a) 3
	$6)^{1/2}$
	в) 5
	r) 0
27.	Решением дифференциального уравнения является:
	а) число
	б) пара чисел
	в) функция
	г) производная функции
28	Определить тип и порядок дифференциального уравнения $y'' - 3y' + 2y = 1$
	а) полное 2-го порядка
	б) полное 1-го порядка
	в) неполное 2-го порядка
	г) неполное 1-го порядка
29	Выбрать функцию, которая удовлетворяет данному дифференциальному
<i></i> ,	уравнению $xy' = 2y$
	a) $y = 5x^2$
	6) $y = x^3$
	B) $y = x^2$
	-, <i>y</i> 5

30. Общее решение дифференциального уравнения xdx+ydy=0:

a) $y = x^2 + c$ 6) $y = x^2$

B) $y^2 + x^2 = c$ $y^2 + x^2 = 1$

22. Пусть $f(x) = \cos^2 x$. Тогда производная f'(x) равна:

Вариант 2.

- 1. Вычислить предел $\lim_{x\to 0} \frac{x^3 7}{5 + x}$
 - a) 25
 - б) 2
 - B) 1.4
 - г) -2
- 2. Если функция непрерывна в каждой точке интервала, то она называется
 - а) монотонной на этом интервале
 - б) возрастающей на этом интервале
 - в) убывающей на этом интервале
 - г) непрерывной на этом интервале
- 3. Точки, в которых функция не является непрерывной называются
 - а) точками экстремума
 - б) критическими точками
 - в) точками разрыва
 - г) точками, в которых функция не определена
- 4. Какой из пределов является замечательным?

a)
$$\lim_{x\to 2} (x^2 + 1) = 5$$

$$6) \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x\to 0} \frac{\sin 2x}{\cos x} = 0$$

$$\lim_{x \to 2} e^{x+1} = e^3$$

- 5. Производная от постоянной функции равна
 - a) 1
 - **б**) 0
 - в) значению постоянной
 - L) ∞
- 6. Укажите формулу для нахождения производной степенной функции

a)
$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}, \alpha \in R$$

б)
$$(a^x)' = a^x \ln a$$
, a>0, a≠1

$$\mathrm{B})\left(e^{x}\right)'=e^{x}$$

$$\Gamma$$
) $(\log_a x)' = \frac{1}{x \ln a}$, a>0, a\neq 1

- 7. Укажите верную формулу
 - a) $(u \pm v)' = u' \cdot v'$
 - 6) $(u \pm v)' = u' \pm v'$
 - B) $(u \cdot v)' = u'v u \cdot v'$
 - Γ) $(u \cdot v)' = u'v' + u \cdot v$

- 8. Найти производную функции $y = \frac{5}{2}x^2 3x + e$
 - a) 5x-3
 - б) 10х-3+е
 - 8 5x-3+e
 - г) 5x+e
- 9. Найти y'(1) для функции $y = \frac{x^2}{x+1}$
 - a) 0.5
 - 6)0,75
 - B) 0,25
 - r) 1,5
- 10. Вычислить производную в данной точке : y=x/5-4 в точке x=0
 - a) -4
 - б) 0,5
 - в) 0,2
 - r) 0
- 11. Укажите, чему равна f'(-1), если $f(x) = (5+6x)^{10}$
 - a) -10
 - б) 10
 - в) 110
 - г) другой ответ
- 12. Дана функция $f(x) = -\frac{x^3}{3} x^2 + 3x 2$. Найти ее критические точки
 - a) -3; 1
 - 6) -2; 1,5
 - в) -1,5; 2
 - Γ) 0,5; 2
- 13. Знак второй производной f''(x) меняется по схеме

х	(-∞;-6)	(-6;-1)	(-1;4)	(4;+∞)
f'(x)	-	-	+	+

На каких промежутках график f(x) вогнутый

- a) (-6;-1); (-1;4)
- δ) (-∞;-6); (4;+∞)
- B) (-1;4); $(4;+\infty)$
- Γ) (- ∞ ;-6); (-6;-1)
- 14. Найти промежутки убывания функции $f(x) = -x^3 + 12x + 5$
 - a) $(-\infty;0) \cup (2;+\infty)$
 - б) (0;2)
 - B) $(2;+\infty)$
 - Γ) $(-\infty;-2) \cup (2;+\infty)$
- 15. Если при переходе через критическую точку f'(x) меняет знак с «-» на «+», то
 - это точка
 - а) минимума
 - б) перегиба
 - в) максимума
 - г) разрыва

16. Пусть $f'(x) = 5x + x^2$. Тогда число промежутков убывания функции $f(x)$ равно: а) 0
б) 1 в) 2
r) 3
17. Определенный интеграл – это: а) число
б) функция в) множество функций
г) другой ответ.
18. Найти интеграл $\int (2e^x + 4x)dx$
$a)e^{x}+2x^{2}+c$
6) $2e^x + 2x^2$
B) $2e^x + 4 + c$ F) $2e^x + 2x^2 + c$
19. Найти интеграл $\int (x * e^{x^2+1}) dx$
a) $\frac{1}{2}e^{x^2+1}+c$
6) $\frac{1}{2}e + c$
B) $e^{x^2+1} + c$
$r)\frac{1}{2}e^{x^2+1}$
20. Найти интеграл $\int_{-1}^{2} (x^2 + 1) dx$
a) 6
б) 8 в) 10
r) 4
21. Вычислить площадь фигуры, ограниченной линиями $y=x^3$; $y=0$; $x=2$; a) 8
6) 0
B) 4
г) другой ответ 22. Пусть $f(x) = x^2 - 5x + 1$, $x_0 = 1$. Тогда значение производной $f'(x_0)$ равно:
a) -3
6) -5
в) 1 г) другой ответ
23. Найти интеграл $\int_{2}^{2} 7 dx$
a)5
б)7 в)9
Γ)0
24. Множество, состоящее из всех элементов, которые принадлежат хотя бы одному из двух
данных множеств, называется a) пересечением множеств
б) объединением множеств
в) разностью множеств г) дополнением множества
1) Actionicinies sinomeerbu

- 25. Найти объединение множеств A и B, если $A = \{1,3,5,7,9\}$; $B = \{2,4,6,8\}$.
 - a) $AUB = \{0\}$
 - δ) AUB = 0
 - B) AUB = $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - Γ) AUB = {2,4,6,8}
- 26. Найти пересечение множеств (-2; 2) и (-3; 1):
 - a) (-3; 2)
 - 6)[0,1]
 - (-2, 1)
 - Γ) [-2, 0].
- 27. График решения дифференциального уравнения называется
 - а) парабола
 - б) интегральная кривая
 - в) произвольная кривая
 - г) гипербола
- 28. Определить тип и порядок дифференциального уравнения $y'' + 3y \sin x 3y'x = 2$
 - а) полное 2-го порядка
 - б) полное 1-го порядка
 - в) неполное 2-го порядка
 - г) неполное 1-го порядка
- 29. Проинтегрировать дифференциальное уравнение $x^2y' = (x+1)y$
- 30. Указать точку максимума $y = \frac{x^3}{3} \frac{x_2}{2} 2x$
 - a) 2
 - б) -2
 - в) 1
 - г) **-**1

Вариант 3.

- 1. Предел постоянной величины равен
 - а) числу, к которому стремится x
 - б) постоянной величине
 - в) нулю
 - L) ∞
- 2. Продолжите предложение: Предел произведения конечного числа функций равен
 - а) произведению значений пределов каждой функции в отдельности
 - б) сумме пределов каждой функции в отдельности
 - в) сумме значений производных этих функций
 - г) не существует
- 3. Укажите значение предела $\lim_{x\to\infty} \frac{x^3-7}{5+x^3}$
 - a) 0
 - **б**) ∞
 - B) 1
 - г) 1
- 4. Найти предел $\lim_{x\to 1} (5-4x+x^2)$
 - a) -1
 - б) 2
 - в) -3
 - г) -2
- 5. Производная линейной функции y = kx + b равна
 - a) k
 - б) b
 - в) 1
 - r) 0
- 6. Укажите формулу для нахождения производной логарифмической функции

a)
$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}, \alpha \in R$$

6)
$$(a^x)' = a^x \ln a$$
, a>0, a\neq 1

$$\mathrm{B})\left(e^{x}\right)'=e^{x}$$

$$\Gamma$$
) $(\log_a x)' = \frac{1}{x \ln a}$, a>0, a\neq 1

- 7. Укажите верную формулу
 - a) $(u \pm v)' = u' \cdot v'$
 - 6) $(u \pm v)' = u' v'$

B)
$$(\frac{u}{v})' = \frac{u'v + uv'}{v^2}$$

$$\Gamma\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

8. Найти производную функции $f(x)=2\sin x + \cos x-3$

a)
$$f'(x) = tg x + 7$$

6)
$$f'(x) = \frac{1}{\sin x} - 2$$

$$B) f'(x) = 2\cos x - \sin x$$

$$\Gamma$$
) f'(x) = 3sin x – 2

9. Найти производную функции $f(x) = x\sqrt{x}$

a)
$$\frac{3}{2\sqrt{x}}$$

$$6) \frac{3\sqrt{x}}{2}$$

$$B) \frac{2}{3\sqrt{x}}$$

$$\Gamma$$
) 2,5 \sqrt{x}

10. Найти вторую производную функции $y = \pi^2 - x^3 + e^3$

a)
$$\pi^2 - 6x + e^3$$

$$6) -3x^2 + e^3$$

$$B) - 6x$$

$$\Gamma$$
) $e^3 - 6x$

11. Укажите, чему равна f'(-1), если $f(x) = (3+2x)^{12}$

б) 24

г) другой ответ

12. Найти критические точки первого рода $y=2x^2+4x$

- a) -1
- б) 1
- в) -4
- r) 0

13. Знак производной меняется по схеме

x	(-∞;-1)	(-1;1)	(1;7)	$(7;+\infty)$
f'(x)	-	+	+	-

На каких промежутках f(x) возрастает

б)
$$(-\infty;-1)$$
; $(7;+\infty)$

B)
$$(-1;1)$$
; $(7;+\infty)$

$$\Gamma$$
) (- ∞ ;-1); (1;7)

14. Укажите промежутки убывания функции $f(x) = -x^3 + 3x^2 - 3$

a)
$$(-\infty;0) \cup (2;+\infty)$$

- б) (0;2)
- B) $(2;+\infty)$

$$\Gamma$$
) $(-\infty;0) \cup (3;+\infty)$

- 15. Пусть f'(x) = -4x + 8. Тогда функция f(x) имеет
 - а) максимум в точке х=2
 - б) минимум в точке х=2
 - в) максимум в точке х=-2
 - г) минимум в точке х=-2
- 16. Первообразная это:
 - а) число
 - б) функция
 - в) геометрическая фигура
 - г) другой ответ
- 17. Пусть F(x) является первообразной для f(x). Тогда для f(x)
 - а) других первообразных нет
 - б) существует бесконечное число первообразных
 - в) существует конечное число первообразных
 - г) другой ответ
- 18. Найти интеграл $\int (7^x 4\cos x) dx$

a)
$$\frac{7^x}{ln^7} - 4\cos x + c$$

6)
$$7^{x} - 4sinx + c$$

$$B) \frac{7^x}{\ln 7} - 4\sin x + c$$

$$\Gamma$$
) $7^x - 4sinx$

19. Найти интеграл ∫ *sin5xdx*

a)
$$\frac{1}{5} \cos 5x + c$$

$$6)\frac{1}{5}sin5x + c$$

$$B) -\frac{1}{5}\cos 5x + c$$

$$\Gamma$$
) $-\cos 5x + c$

- 20. Вычислить $\int_{0}^{2} x^{4} dx$
 - a) 6
 - б) 0
 - в) 6,2
 - г) другой ответ
- 21. Вычислить площадь фигуры, ограниченной линиями $y=x^4$; y=0; x=2; x=1
 - a) 6,2
 - б) 15
 - в) 16
 - г) другой ответ
- 22. Найти производную функции y = cos 3x
 - a) $\cos 3x$
 - б) 3*sinx*
 - B) -3sin3x
 - г) *3cos3x*

- 23. Найти интеграл $\int (x-1)^2 dx$
 - a) $\frac{x^3}{3} x^2 + x + c$

 - 6) $\frac{x^3}{3} x^2 + x$ B) $\frac{x^2}{2} x^2 + x + c$
 - $(x)^{\frac{x^2}{2}} x^2 + 1$
- 24. Множество А называется подмножеством множества В, если
 - а) каждый элемент множества В является элементом множества А
 - б) каждый элемент множества А является элементом множества В
 - в) хотя бы один элемент множества В является элементом множества А
 - г) хотя бы один элемент множества А является элементом множества В
- 25. Множество всех элементов, которые не принадлежат данному множеству, но принадлежат универсальному множеству, называется
 - а) пересечением множеств
 - б) объединением множеств
 - в) разностью множеств
 - г) дополнением множества
- 26. Найти пересечение множеств $A = \{1, 3, 5, 7, 9\}$ и $B = \{2, 4, 6, 8\}$.
 - а) пустое множество
 - б) {1}
 - в) {1,2,3,4,5,6,7,8}
 - r) {0}
- 27. Определить тип и порядок дифференциального уравнения 3xy 3y' = 1
 - а) полное 2-го порядка
 - б) полное 1-го порядка
 - в) неполное 2-го порядка
 - г) неполное 1-го порядка
- 28. Задача отыскания решения дифференциального уравнения, которое удовлетворяет заданным начальным условиям, называется
 - а) задачей нахождения общего решения
 - б) задачей Дирихле
 - в) задачей Коши
 - г) задачей общего назначения
- 29. Порядок дифференциального уравнения определяется порядком
 - а) порядком старшей производной в уравнении
 - б) наибольшей степенью переменной
 - в) порядком младшей производной
 - г) наименьшей степенью производной
- 30. Общее решение дифференциального уравнения $y' = 3x^2y$
 - a) $\ln y = x^3 + c$
 - 6) $v = x^3 + c$
 - B) $\ln v = 2x^3$
 - Γ) $v = 2x^3 + c$

Вариант 4.

- 1. Функция может иметь в данной точке
 - а) два предела
 - б) множество пределов
 - в) один предел
 - г) несколько пределов
- 2. Продолжите предложение: Предел суммы конечного числа функций равен
 - а) произведению значений пределов каждой функции в отдельности
 - б) сумме пределов каждой функции в отдельности
 - в) сумме значений производных этих функций
 - г) не существует
- 3. Найти предел $\lim_{x\to\infty}\frac{2}{x^3}$
 - a) 0
 - φ
 - в) -1
 - г) 1
- 4. Значение предела $\lim_{x\to 1} (6-4x)(2x+1)$ равно
 - a) 12
 - б) 6
 - B) -8
 - г) -6
- 5. Функция, имеющая производную в данной точке, называется
 - а) определенной в этой точке
 - б) интегрируемой в этой точке
 - в) разрывной в этой точке
 - г) дифференцируемой в этой точке
- 6. Укажите формулу для нахождения производной показательной функции

a)
$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}, \alpha \in R$$

6)
$$(a^x)' = a^x \ln a$$
, a>0, a\neq 1

$$\mathbf{B})\left(e^{x}\right)'=e^{x}$$

$$\Gamma$$
) $(\log_a x)' = \frac{1}{x \ln a}, a > 0, a \neq 1$

- 7. В чем сущность физического смысла производной первого порядка?
 - а) скорость
 - б) ускорение
 - в) угловой коэффициент
 - г) тангенс угла наклона

- 8. Чему равно значение производной функции $y = 3x 4x^3$ в точке x=3
 - a) 108
 - б) 105
 - в) 9
 - г) другой ответ
- 9. Найти производную функции $f(x) = x^3 6x^2 + 2x 6$
 - a) $f'(x) = 3x^2 2x + 2$
 - 6) $f'(x) = 3x^2 12x + 2$
 - B) $f'(x) = 3x^2 6x 6$
 - $\Gamma) f'(x) = x^2 2x$
- 10. Производная функции $f(x) = \frac{2x+3}{5-3x}$ имеет вид
 - a) $\frac{1}{(5-3x)^2}$
 - $6) \frac{-12x+1}{(5-3x)^2}$
 - B) $\frac{19}{(5-3x)^2}$
 - г) другой ответ
- 11. Найти производную функции *y=sin5x*
 - a) $\cos 5x$
 - б) 5sinx
 - в) -5cosx
 - г) *5cos5x*
- 12. Найти критические точки первого рода $y=-x^2+2$
 - a) 1
 - б) -1
 - в) 0
 - Γ) -2
- 13. Знак производной меняется по схеме

х	(-∞;-6)	(-6;-1)	(-1;4)	(4;+∞)
f'(x)	-	-	+	+

На каких промежутках f(x) убывает

- a) (-6;-1); (-1;4)
- δ) (-∞;-6); (4;+∞)
- B) (-6;-1); $(4;+\infty)$
- Γ) (- ∞ ;-6); (-6;-1)
- 14. Укажите промежутки возрастания функции $f(x) = x^3 3x^2 + 3$
 - a) $(-\infty;0) \cup (2;+\infty)$
 - б) (0;2)
 - B) $(2;+\infty)$
 - Γ) $(-\infty;0) \cup (3;+\infty)$
- 15. Пусть f'(x) = 5x + 10. Тогда функция f(x) имеет
 - а) максимум в точке х=2
 - б) минимум в точке х=2
 - в) максимум в точке х=-2
 - г) минимум в точке х=-2

16. Пусть $f'(x) = 2 - x^2$. Тогда число промежутков убывания функции $f(x)$ равно:
a) 0
6) 1
в) 2
r) 3
17. Пусть $F(x)$ является первообразной для $f(x)$. Тогда для $f(x)$
а) других первообразных нет
б) существует бесконечное число первообразных
в) существует конечное число первообразных
г) другой ответ. 18. Найти интеграл $\int (\sqrt{x} + 2\sin x + 1) dx$
a) $\sqrt{x} - 2\cos x + c$
$6) \frac{2x\sqrt{x}}{3} - 2\cos x + x + c$
$B) \frac{2x\sqrt{x}}{3} + 2\sin x + x + c$
$\Gamma \int \sqrt{x} - 2\sin x + x + c$
19. Найти интеграл $\int (3x-1)^4 dx$
$a)\frac{(3x-1)^4}{15} + c$
6) $\frac{(3x-1)^5}{15} + c$
B) $(3x-1)^5+c$
$r)(3x-1)^4+c$
20. Вычислить $\int_{0}^{3} x^{3} dx$
a) 8
б) 0
в) 4
г) другой ответ
21. Вычислить площадь фигуры, ограниченной линиями $y=x$; $y=0$; $x=2$; $x=4$
a) 6
б) 2
в) 4
Γ) другой ответ χ^2
22. Найти площадь фигуры, заключённой между линиями: $y = \frac{x^2}{3} + 1$, осью ОХ
и прямыми x=1 и x=5
a) 18
6) 161/9
B) 158/9
r) 160/9
23. Пусть $f(x) = \sin 2x$. Тогда производная $f'(x)$ равна:
a) 2cos2x
6) 2sin2x
B) $\cos 2x$
г) другой ответ

- 24. Совокупность объектов, объединенных по определенному признаку называется
 - а) объединением
 - б) пересечением
 - в) подмножеством
 - г) множеством
- 25. Множество, состоящее только из тех элементов множества A1, которые не содержатся в A2, называется
 - а) пересечением множеств А1 и А2
 - б) объединением множеств А1 и А2
 - в) разностью множеств А1 и А2
 - г) дополнением множества А1
- 26. N множество натуральных чисел. Какое из множеств является его подмножеством: $A=\{2,4,6,8.\}, B=(N2,N3,N4,.\}; C=\{1,1/2,1/3,1/4,.\}; Д=\{1,0,1\}?$
 - a) B
 - б) А
 - в) C
 - г) Д
- 27. Определить тип и порядок дифференциального уравнения $3y' = 5x^2y^4$
 - а) полное 2-го порядка
 - б) полное 1-го порядка
 - в) неполное 2-го порядка
 - г) неполное 1-го порядка
- 28. Определить тип и порядок дифференциального уравнения y'' 3y' + 2y = 1
 - а) полное 2-го порядка
 - б) полное 1-го порядка
 - в) неполное 2-го порядка
 - г) неполное 1-го порядка
- 29. Нахождение решения дифференциального уравнения называется
 - а) интегрированием уравнения
 - б) дифференцированием уравнения
 - в) потенцированием уравнения
 - г) логарифмированием уравнения
- 30. Общее решение дифференциального уравнения y' + 5xy = 0
 - a) $\ln v = x^3 + c$
 - $6) \ln y = x^2 + c$
 - B) $y = x^2 + c$
 - Γ) $\ln y = -2.5x^2 + c$

Ключ к тесту

	Вариант 1		Вариант 2		Вариант 3		Вариант 4
1	В	1	В	1	Б	1	В
2	В	2	Γ	2	A	2	Б
3	В	3	В	3	Γ	3	A
4	Б	4	Б	4	Б	4	Б
5	A	5	Б	5	A	5	Γ
6	В	6	A	6	Γ	6	Б
7	Б	7	Б	7	Γ	7	A
8	В	8	A	8	В	8	Γ
9	В	9	Б	9	Б	9	Б
10	В	10	В	10	В	10	В
11	Б	11	Γ	11	Б	11	Γ
12	Б	12	A	12	A	12	В
13	Б	13	В	13	A	13	Γ
14	A	14	Γ	14	A	14	A
15	В	15	A	15	A	15	Γ
16	Γ	16	Б	16	Б	16	В
17	В	17	A	17	Б	17	Б
18	Б	18	Γ	18	В	18	Б
19	В	19	A	19	В	19	Б
20	Γ	20	A	20	В	20	Γ
21	Б	21	В	21	A	21	A
22	Γ	22	A	22	В	22	Γ
23	Б	23	Γ	23	A	23	Γ
24	A	24	Б	24	Б	24	Γ
25	Б	25	В	25	Γ	25	В
26	В	26	В	26	A	26	Б
27	В	27	Б	27	Б	27	Б
28	В	28	A	28	В	28	В
29	В	29	В	29	A	29	A
30	В	30	Γ	30	A	30	Γ