ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КОЛЛЕДЖ СВЯЗИ №54

ОТДЕЛЕНИІ	Е «Проводная связь»
ПЦК (КМК)_	общих гуманитарных и естественнонаучных дисциплин

УТВЕРЖДАЮ)
Зам. директора по УМР)
Бозрова И.Г.	

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО САМОСТОЯТЕЛЬНОЙ РАБОТЕ СТУДЕНТОВ

Дисциплина	математика
для специальнос	ги 210406 «Сети связи и системы коммутации»

Разработчик: Бобкова О.Н., преподаватель

Методические рекомендации рассмотрены и одобрены на заседании ПЦК естественнонаучных дисциплин
протокол № от «» 201_ г. Председатель ПЦК Бобкова О.Н.
Методические рекомендации рассмотрены и одобрены на заседании методического совета протокол № от «» 201_ г.
Зам. директора по качеству образовательного процесса: Н.Г.Ронжина

Содержание

1.	Общие положения4
2.	Формы самостоятельной работы5
3.	Учебно-методическое и информационное обеспечение
	дисциплины

1. Общие положения

Целью самостоятельной (внеаудиторной) работы студентов является обучение навыкам работы с учебной, научно-теоретической литературой, сетью ИНТЕРНЕТ - необходимыми для углубленного изучения дисциплины «Математика», а также развитие у них устойчивых способностей к самостоятельному изучению и изложению полученной информации.

Основными задачами самостоятельной работы студентов являются:

- овладение знаниями;
- наработка навыков решения математических и практических задач;
- получение опыта применения самостоятельно полученных теоретических знаний для решения практических задач;
- приобретение опыта творческой и исследовательской деятельности;
- развитие творческой инициативы, самостоятельности и ответственности.

Самостоятельная работа студентов по дисциплине «Математика» обеспечивает:

- закрепление и углубление знаний, полученных студентами в процессе лекционных и практических занятий;
- формирование навыков работы с учебной, научно-теоретической литературой, сетью ИНТЕРНЕТ и т.п.;
- использование полученных знаний для решения практических задач;
- понимание межпредметных связей и роли математики при изучении спецдисциплин;

Самостоятельная работа является обязательной для каждого студента. Перед выполнением внеаудиторной самостоятельной работы преподаватель проводит со студентами инструктаж по выполнению задания, обозначает его цель, сроки выполнения, требования к результатам работы и критерии оценки.

Внеаудиторная самостоятельная работа выполняется студентом по заданию преподавателя, но без его непосредственного участия.

Содержание внеаудиторной самостоятельной определяется исходя и в соответствии с рекомендуемыми видами заданий согласно рабочей программы учебной дисциплины.

2. Формы самостоятельной работы

Раздел 1. Теория пределов

Тема 1.1. Предел функции. Непрерывность функции.

Для углубления знаний по данной теме предусмотрено:

- 1) самостоятельное изучение вопроса «Первый и второй замечательные пределы»;
- 2) отработка навыка нахождения пределов с применением замечательных пределов (приложение 1).

Раздел 2. Дифференциальное исчисление

Тема 2.2. Приложение производной

Для закрепления и систематизации знаний по данной теме предусмотрено:

- 1) законспектировать вопрос «Общая схема исследования функции с помощью производной (первого и второго порядка);
- 2) исследовать данные функции по схеме и построить их графики (приложение 2.1);
- 3) проверить правильность построения графиков с помощью компьютерной программы;
- 4) решить данные задачи с помощью производной (приложение 2.2)

Раздел 3. Интегральное исчисление

Тема 3.1. Неопределенный интеграл

Для углубления знаний по данной теме предусмотрено:

- 1) самостоятельное изучение вопроса «Вычисление неопределенных интегралов методом интегрирования по частям»
- 2) отработка навыка нахождения неопределенных интегралов методом интегрирования по частям в виде выполнения контрольной работы (приложение 3.1)

Тема 3.2. Определенный интеграл

Для закрепления и расширения знаний по данной теме предусмотрено:

- 1) решение задач на вычисление площадей фигур с помощью определенного интеграла (приложение 3.2);
- 2) выполнение конспекта по теме «Вычисление объемов тел с помощью определенного интеграла»
- 3) решение прикладных задач с помощью определенного интеграла (приложение 3.2).

Раздел 4. Дифференциальные уравнения

Для закрепления и расширения знаний по данному разделу предусмотрено: Подобрать примеры практических задач (в том числе из области связи), которые решаются с помощью дифференциальных уравнений.

Раздел 5. Ряды.

Для закрепления и расширения знаний по данному разделу предусмотрено:

Решение примеров на разложение функций в ряд Тейлора и Фурье (приложение 4).

Раздел 7. Теория вероятностей и математическая статистика

Для закрепления и расширения знаний по данному разделу предусмотрено: Изучение и написание конспекта по темам: «Дисперсия и среднее квадратическое отклонение случайной величины», «Понятие о корреляциях, о регрессиях».

Раздел 6. Дискретная математика

Для закрепления и расширения знаний по данному разделу предусмотрено: Написание конспекта на тему «Основные понятия теории графов»

Указания к выполнению отчетов по самостоятельным работам

- 1. Самостоятельная работа выполняется в срок, определенный преподавателем.
- 2. Практические задания по темам оформляются студентом в отдельной тетради для самостоятельных работ с указанием темы работы.
- 3. Конспект по самостоятельно изучаемым вопросам и темам оформляется в рабочей тетради.
- 4. При составлении конспекта необходимо внимательно ознакомиться с изучаемым материалом, выявить и записать основные определения, понятия, свойства, а также формулы для их нахождения.
- 5. Рассмотреть типовые примеры с решениями, изложенные в рассматриваемом материале. Это поможет выполнить практические задания.
- 6. Конспект предоставляется на проверку преподавателю, при этом преподаватель может задать уточняющие вопросы по данному материалу.
- 7. Критерии оценки практических заданий

Отметка «5» ставится, если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);

допущена одна существенная ошибка или два-три несущественных ошибки.

Отметка «3» ставится, если:

допущены более одной существенной ошибки или более двух-трех несущественных ошибок, но учащийся владеет обязательными умениями по проверяемой теме; при этом правильно выполнено не менее половины работы.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

К категории *существенных ошибок* следует отнести ошибки, связанные с незнанием, непониманием учащимися основных положений теории и с неправильным применением методов, способов, приемов решения практических заданий, предусмотренных программой.

К категории *несущественных ошибок* следует отнести погрешности, связанные с небрежным выполнением записей, рисунков, графиков, чертежей, а также погрешности и недочеты, которые не приводят к искажению смысла задания и его выполнения.

При наличии существенной ошибки задание считается невыполненным.

3. Учебно-методическое и информационное обеспечение дисциплины

3.1. Основная литература

	, , , , , , , , , , , , , , , , , , ,		Я	Год издания	Наличие	
№ п/п	Наименование	Авторы	Место издания		в библиотеке, экз	в ЭБС, адрес в сети Интернет
1.	Математика	Богомолов	Москва,	2008г.		
		H.B.	Дрофа,			
2.	Математика, учебник	Пехлецкий	Москва,	2008г.		
	для ССУЗов	И.Д.,	Академия,			
3.	Математика	Омельченко	Ростов на	2005г.		
		В.П.	Дону,			
			Феникс			
4.	Конспект лекций по	Письменный	Москва,	2006 г.		
	высшей математике	Дмитрий	Айрис-			
	(1 и 2 части),		пресс			

3.2. Дополнительная литература

	Наименование	Авторы	Я	Год издания	Наличие	
№ п/п			Место		в библиотеке, экз	в ЭБС, адрес в сети Интернет
1.	Дискретная математика	Спирина М.С.	Москва, Академия	2006г.		Титериет
2.	Алгебра и начала анализа, в 2-х частях	Яковлев Г.Н.	Новая волна	2008г.		

3.3. Интернет-ресурсы

1. http://ru.wikipedia.org

Энциклопедия

2. http://webmath.exponenta.ru

На сайте дан теоретический и практический материал по высшей математике

3. http://www.mathprofi.ru

Высшая математика для заочников и не только

4. http://matematik-master.ru

На сайте можно найти лекции по высшей математике, решения типовых примеров

5. http://integraloff.net

Сайт предназначен для решения различных задач по математике в режиме онлайн

6. http://lib.mexmat.ru

Электронная библиотека механико-математического факультета МГУ

7. http://www.exponenta.ru

Образовательный математический сайт

8. http://www.krugosvet.ru

Универсальная научно-популярная онлайн-энциклопедия

Приложение 1

Вычислить пределы:

- $1) \quad \lim_{x \to 0} \frac{\sin 3x}{3x}$
- $2) \lim_{x \to 0} \frac{\frac{5x}{3}}{\sin \frac{5x}{3}}$
- $3) \lim_{x\to 0} \frac{\sin(arctgx)}{arctgx}$
- $4) \quad \lim_{x \to 0} \frac{\sin 7x}{3x}$
- $5) \quad \lim_{x \to 0} \frac{tg5x}{x}$
- $6) \lim_{x\to 0} \frac{1-\cos 4x}{5x}$
- $\lim_{x \to 0} \frac{\sin 3x}{\sin 2x} \cdot$
- 8) $\lim_{x \to \infty} (1 + \frac{1}{3x})^{4x}$
- 9) $\lim_{x \to \infty} \left(\frac{x-2}{x+1}\right)^{2x+3}$
- 10) $\lim_{x \to \infty} (\frac{x+1}{x+3})^{2x+1}$

Приложение 2.1

Вариант 1.

Исследовать функции и построить их графики:

a)
$$y = 3x^4 - 4x^3$$
;

6)
$$y = x + \frac{1}{x}$$
;

$$y = \frac{\ln x}{x}.$$

Вариант 2.

Исследовать функции и построить их графики:

a)
$$y = x^3 - 3x^2 + 1$$
;

6)
$$y = \frac{x^2 + 4}{x}$$
;

B)
$$y = x - \ln x$$
.

Приложение 2.2

Решить задачи:

- 1. Дан бак без крышки в виде прямоугольного параллелепипеда, в основании которого лежит квадрат и объем равен 108 см³. При каких размерах бака на его изготовление пойдет наименьшее количество материала?
- 2. Чтобы уменьшить трение жидкости о стены и дно канала, нужно смачиваемую ею площадь сделать возможно малой. Требуется найти размеры открытого прямоугольного канала с площадью сечения 4,5м², при которых смачиваемая площадь будет наименьшей.
- 3. Требуется огородить забором прямоугольный участок земли площадью 294 м2 и разделить затем этот участок забором на две равные части. При каких линейных размерах участка длина всего забора будет наименьшей?
- 4. Издержки производства некоторого товара объема х характеризуются функцией $K(x) = 10x^2 + 15x + 50$. Определить, при каком объеме х производства товара прибыль Q будет максимальной (Q = xp K(x)), если цена товара изменяется по закону $p = 80 \frac{x}{16}$.

Приложение 3.1

Интегрирование по частям.

	Вариант 1		Вариант 2
1	$\int \ln x dx$	1	$\int x \cdot \cos x dx$
2	$\int (7-2x) \cdot e^x dx$	2	$\int (3x - 4) \cdot \ln x dx$
3	$\int 3x \cdot \sin x dx$	3	$\int 5x \cdot 5^x dx$
4	$\int x \cdot 2^x dx$	4	$\int (x+4) \cdot e^x dx$
5	$\int (4x+7) \cdot \ln 3x$	5	$\int (9x-1) \cdot e^{5x} dx$
6	$\int x^2 \cdot e^{2x-2} dx$	6	$\int x^2 \cdot \sin 4x dx$

Приложение 3.2

Вариант 1.

- 1. Ускорение точки (при движении по прямой) в момент времени t равно $a(t)=1+\sin 2t$. Найдите закон движения точки x=x(t), если в момент времени t=0 координата точки равна 2 и скорость равна 1.
- 2. Два тела одновременно начинают двигаться из одной точки по одной прямой в противоположных направлениях со скоростями: V_1 =6 t^2 -2t; V_2 =8t+25. Через сколько времени тела удаляться на равные расстояния от начальной точки движения и чему равно это расстояние, если скорости выражены в м/сек?
- 3. Вычислить работу, совершенную при растяжении пружины на 0,06 м, если для ее растяжения на 0,03 м нужна сила 15 Н.
- 4. Вычислить площадь фигуры, ограниченной линиями: $y = -x^2 + 9$; y = 5.
- 5. Найти объем тела, образованного вращением фигуры, ограниченной указанными линиями: xy = -2; x = 1; x = 2; y = 0 (вокруг оси Ox).

Вариант 2.

- 1. Материальная точка массы m=1 движется по прямой под действием постоянной силы F=6. Найдите закон движения точки x=x(t), если в начальный момент времени t=0 координата равна 10 и скорость равна 3.
- 2. Одновременно из одной точки по одной прямой и в одном направлении начинают двигаться два тела со скоростями V_1 = t^2 -2t; V_2 =4(t+3). Через сколько секунд и на каком расстоянии тела снова будут вместе, если скорости выражены в м/сек?
- 3. Скорость точки, движущейся прямолинейно, задана уравнением $v = 3t^2 2t + 5$. Вычислить ее путь за четвертую секунду.
- 4. Вычислить площадь фигуры, ограниченной линиями:

$$y = \frac{1}{4}x^3$$
; $y = 2x$.

5. Найти объем тела, образованного вращением фигуры, ограниченной указанными линиями: $y = \sin x$; $x = \frac{\pi}{2}$; y = 0 (вокруг оси Ох).

Приложение 4.

Разложить в ряд Фурье функции:

1)
$$y = x^2$$
 при $x \in [-\pi; \pi]$

2)
$$y = x^2$$
 при $x \in [0;2\pi]$

- 3) y = 3x 1, заданную на интервале -1<x<1.
- 4) y = x на отрезке $[-\pi, \pi]$