ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГОРОДА МОСКВЫ «КОЛЛЕДЖ СВЯЗИ №54» имени п.м. вострухина

	УТВЕРЖДАЮ
ŗ	Вам. директора по УМР
	Бозрова И.Г.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Дисциплина Е.Н.01. Математика

для специальности 13.02.07 Электроснабжение (по отраслям)

Разработчик: Л.Ш.Абдулова преподаватель высшей категории

Методические рекомендации рассмотрены и одобрены на заседании ПЦК естественнонаучных дисциплин
протокол № от «» 201_ г. Председатель ПЦК Бобкова О.Н.
Методические рекомендации рассмотрены и одобрены на заседании методического совета протокол № от «» 201_ г.

Содержание

1.	Общие положения	4
2.	Виды практических занятий	4
3.	Тематика практических занятий	5
4.	Учебно-методическое и информационное обеспечение дисциплины	21

1. Обшие положения

Цель и задачи практических занятий:

В результате выполнения практических занятий обучающийся должен

уметь:

- решать прикладные задачи в области профессиональной деятельности.

знать:

- значение математики в профессиональной деятельности и при освоении профессиональной образовательной программы;
- основные математические методы решения прикладных задач в области профессиональной деятельности;
- основные понятия и методы математического анализа, линейной алгебры, теории вероятностей и математической статистики;
- основы интегрального и дифференциального исчисления.

2. Виды практических занятий

Практические занятия - один из видов практического обучения, имеющий целью закрепление теоретических знаний и формирование практических умений и навыков.

Практическая работа по математике заключается в выполнении студентами под руководством преподавателя комплекса учебных заданий, направленных на усвоение основ учебной дисциплины «Математика», приобретение практических навыков решения примеров и задач. Выполнение практической работы студенты производят в письменном виде, оформляя отчеты в отдельной тетради для практических работ. Отчет предоставляется преподавателю, ведущему данную дисциплину для проверки.

Практические занятия способствуют более глубокому пониманию теоретического материала учебного курса, межпредметных связей, а также развитию, формированию и становлению различных уровней составляющих профессиональной компетентности студентов. Основой практикума выступают типовые задачи, которые должен уметь решать студент, изучающий дисциплину «Математика» и обучающийся специальности «13.02.07 Электроснабжение (по отраслям)».

Для лучшего усвоения студентами изучаемого материала и получения уверенных навыков решения примеров и задач при проведении практических занятий целесообразно использовать различные методы и приемы:

- рассмотрение решения типовых примеров в форме видео лекции;
- исследовательская работа при решении примеров и практических задач;
- работа в группах;
- применение компьютерных программ для решения математических задач.

Критерии оценки практических заданий

Отметка «5» ставится, если:

работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок; в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

Отметка «4» ставится, если:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); допущена одна существенная ошибка или два-три несущественных ошибки.

Отметка «3» ставится, если:

допущены более одной существенной ошибки или более двух-трех несущественных ошибок, но студент владеет обязательными умениями по проверяемой теме; при этом правильно выполнено не менее половины работы.

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что студент не владеет обязательными умениями по данной теме в полной мере.

К категории *существенных ошибок* следует отнести ошибки, связанные с незнанием, непониманием студентами основных положений теории и с неправильным применением методов, способов, приемов решения практических заданий, предусмотренных программой.

К категории *несущественных ошибок* следует отнести погрешности, связанные с небрежным выполнением записей, рисунков, графиков, чертежей, а также погрешности и недочеты, которые не приводят к искажению смысла задания и его выполнения.

При наличии существенной ошибки задание считается невыполненным.

- углубление, закрепление и конкретизацию знаний, полученных на лекциях и в процессе самостоятельной работы;
- формирование практических умений и навыков, необходимых в будущей профессиональной деятельности;
 - развитие умений наблюдать и объяснять явления, изучаемые;
 - развития самостоятельности и т.д.

3. Тематика практических занятий

Практическое занятие 1.

Тема и содержание занятия: Вычисление пределов функций. Дифференцирование сложных функций. Нахождение производной функций.

Цель занятия: отработать навык вычисления пределов функций, раскрытия неопределенностей и дифференцирование элементарных и сложных функций.

Уметь: вычислять пределы функций, применяя основные теоремы о пределах; производить сложные функции

Продолжительность занятия – 2 часа

Вариант 1

1. Вычислить предел функции:

$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 8x + 15}.$$

2. Вычислить предел функции:

$$\lim_{x\to 2}\frac{x+5}{3x-6}.$$

3. Вычислить предел функции:

$$\lim_{x\to 0} \frac{\sin 17x}{\sin 12x}.$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1+\frac{7}{x}\right)^{\frac{x}{3}}.$$

5.Вычислить предел функции:

$$\lim_{x \to 4} \frac{x^2 + x - 20}{x^2 - 16}.$$

6.Вычислить предел функции:

$$\lim_{x\to 2}\frac{3x+6}{2x-4}.$$

./Вычислить предел функции:

$$\lim_{x\to 0}\frac{\sin 7x}{\sin 13x}.$$

8.Вычислить предел функции:

$$\lim_{x\to\infty} \left(1+\frac{12}{x}\right)^{\frac{x}{4}}.$$

Вариант 2

1. Вычислить предел функции:

$$\lim_{x \to 7} \frac{x^2 - 49}{x^2 - 5x - 14}.$$

2. Вычислить предел функции:

$$\lim_{x \to 3} \frac{x^2 + 4}{2x - 6}.$$

3. Вычислить предел функции:

$$\lim_{x\to 0}\frac{\sin 9x}{\sin 4x}.$$

4. Вычислить предел функции:

$$\lim_{x\to\infty} \left(1+\frac{15}{x}\right)^{\frac{x}{5}}.$$

5.Вычислить предел функции:

$$\lim_{x \to 5} \frac{x^2 - 12x + 35}{x^2 - 25} \,.$$

6.Вычислить предел функции:

$$\lim_{x \to 5} \frac{x^2 - 1}{2x - 10}.$$

7.Вычислить предел функции:

$$\lim_{x \to 0} \frac{\sin 8x}{\sin 19x}$$

8.Вычислить предел функции:

$$\lim_{x\to\infty} \left(1+\frac{4}{x}\right)^{2x}.$$

Практическое занятие 2.

Тема и содержание занятия: Нахождение производной элементарных и сложных функций **Цель занятия:** отработка навыка нахождения производных функций, применение производной.

уметь находить производную функций.

Продолжительность занятия – 2 часа

Вариант 1

- 1. Найти производную функции $y = \sin^6(4x^3 2)$.
- 2. Найти производную третьего порядка функции $y = 3x^4 + \cos 5x$.
- 3. Написать уравнение касательной к графику функции $f(x) = \frac{3}{x}$ в точке с абсциссой $x_0 = -1$, $x_0 = 1$.
- 4. Материальная точка движется по закону $x(t) = -\frac{1}{3}t^3 + 2t^2 + 5t$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 2

- 1. Найти производную функции $y = \cos^4(6x^2 + 9)$.
- 2. Найти производную третьего порядка функции $y = 2x^5 \sin 3x$.
- 3. Написать уравнение касательной к графику функции $f(x) = 2x x^2$ в точке с абсциссой $x_0 = 0$, $x_0 = 2$.
- 4. Материальная точка движется по закону $x(t) = t^3 4t^2$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 3

- 1. Найти производную функции $y = tg^5(3x^4 13)$.
- 2. Найти производную третьего порядка функции $y = 4x^3 e^{5x}$.
- 3. Написать уравнение касательной к графику функции $f(x) = x^2 + 1$ в точке с абсциссой $x_0 = 0$, $x_0 = 1$.

4. Материальная точка движется по закону $x(t) = \frac{1}{4}t^4 + t^2$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 4

- 1. Найти производную функции $y = ctg^4(5x^3 + 6)$.
- 2. Найти производную третьего порядка функции $y = 5x^4 \cos 4x$.
- 3. Написать уравнение касательной к графику функции $f(x) = x^3 1$ в точке с абсциссой $x_0 = -1$, $x_0 = 2$.
- 4. Материальная точка движется по закону $x(t) = t^4 2t$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 5

- 1. Найти производную функции $y = \arcsin^3 7x^2$.
- 2. Найти производную третьего порядка функции $y = 4x^4 + \sin 2x$.
- 3. Написать уравнение касательной к графику функции f(x)=tgx в точке с абсциссой $x_0=\frac{\pi}{4}$, $x_0=\frac{\pi}{3}$.
- 4. Материальная точка движется по закону $x(t) = 2t^3 8$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Вариант 6

- 1. Найти производную функции $y = arctg^6 5x^4$.
- 2. Найти производную третьего порядка функции $y = 6x^5 + e^{4x}$.
- 3. Написать уравнение касательной к графику функции $f(x) = 1 + \cos x$ в точке с абсциссой $x_0 = 0$, $x_0 = \frac{\pi}{2}$.
- 4. Материальная точка движется по закону $x(t) = t^4 + 2t$. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

Практическое занятие 3.

Тема и содержание занятия: Вычисление неопределенных интегралов методом непосредственного интегрирования.

Цель занятия: выработать навыки вычисления неопределённого интеграла методом непосредственного интегрирования.

уметь вычислять неопределенные интегралы методом непосредственного интегрирования.

Продолжительность занятия – 2 часа

Вариант 1

Найти неопределенные интегралы методом непосредственного интегрирования (для № 1-5).

$$1. \int \left(5\cos x - 3x^2 + \frac{1}{x}\right) dx.$$

$$2. \int \frac{3x^8 - x^5 + x^4}{x^5} dx.$$

$$3. \quad \int \left(6^x \cdot 3^{2x} - 4\right) dx.$$

$$4. \quad \int \left(\frac{1}{\cos^2 x} + \frac{1}{\sqrt{1-x^2}}\right) dx.$$

$$5. \quad \int \frac{dx}{1 + 16x^2} \, .$$

Найти неопределенные интегралы методом подстановки (для № 6-8).

6.
$$\int (8x-4)^3 dx$$
.

7.
$$\int \frac{12x^3 + 5}{3x^4 + 5x - 3} dx$$
.

8.
$$\int x^5 \cdot e^{x^6} dx$$
.

9. Найти неопределенный интеграл методом интегрирования по частям: $\int (x+5) \cos x dx \, .$

Вариант 2

Найти неопределенные интегралы методом непосредственного интегрирования (для N_2 1-5).

$$1. \quad \int \left(6\sin x + 4x^3 - \frac{1}{x}\right) dx \ .$$

$$2. \int \frac{x^9 - 3x^7 + 2x^6}{x^7} dx.$$

$$3. \quad \int \left(7^x \cdot 2^{2x} + 5\right) dx.$$

$$4. \quad \int \left(\frac{1}{1+x^2} + \frac{1}{\sin^2 x}\right) dx.$$

$$5. \quad \int \frac{dx}{\sqrt{4-9x^2}} \, .$$

Найти неопределенные интегралы методом подстановки (для № 6-8).

6.
$$\int (7x+5)^4 dx$$
.

7.
$$\int \frac{18x^2 - 3}{6x^3 - 3x + 8} dx.$$

8.
$$\int x^7 \cdot e^{x^8} dx$$
.

9. Найти неопределенный интеграл методом интегрирования по частям: $\int (x-2) \sin x dx \; .$

Практическое занятие 4.

Тема и содержание занятия: Вычисление интеграла с применением Формулы Ньютона-Лейбница.

Цель занятия: Выработать навыки вычисления определённого интеграла с применением Формулы Ньютона-Лейбница.

уметь вычислять интеграл с применением Формулы Ньютона-Лейбница.

Продолжительность занятия – 2 часа

Вариант 1

1. Вычислить определенный интеграл: $\int_{0}^{2} (4x^{2} + x - 3) dx$.

- 2. Вычислить определенный интеграл методом подстановки: $\int_{2}^{3} (2x-1)^{3} dx$.
- 3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: $y = -x^2 + 4$, y = 0, x = -2, x = 2.
- 4. Найти объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями: $y = \sqrt{x}$, y = 0, x = 1, x = 4.
- 5. Скорость движения точки изменяется по закону $v = 3t^2 + 2t + 1$ (м/с). Найти путь S, пройденный точкой за 10 с от начала движения.

Вариант 2

- 1. Вычислить определенный интеграл: $\int_{0}^{3} (2x^{2} x + 4) dx$.
- 2. Вычислить определенный интеграл методом подстановки: $\int_{0}^{1} (3x+1)^4 dx$.
- 3. Вычислить, предварительно сделав рисунок, площадь фигуры, ограниченной линиями: $y = -x^2 + 1$, y = 0, x = -1, x = 1.
- 4. Найти объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями: $y = \sqrt{x}$, y = 0, x = 0, x = 1.
- 5. Скорость движения точки изменяется по закону $v = 9t^2 8t$ (м/с). Найти путь S, пройденный точкой за четвертую секунду.

Практическое занятие 5.

Тема и содержание занятия: Вычисление площадей фигур с помощью определенного интеграла.

Цель занятия: закрепление умений и навыков решения прикладных задач с помощью определённого интеграла.

Уметь: вычислять площади фигур с применением Формулы Ньютона-Лейбница.

Продолжительность занятия – 2 часа

Вариант 1.

Вычислить площадь фигуры, ограниченной линиями:

a)
$$y = \frac{1}{4}x^3$$
; $y = 2x$;

6)
$$y = x^2 - 4x + 5$$
; $y = x + 5$

B)
$$xy = -2$$
; $x = 1$; $x = 2$; $y = 0$

$$y = 4 - x^2; y = 0.$$

Вариант 2.

Вычислить площадь фигуры, ограниченной линиями:

a)
$$y = -x^2 + 9$$
; $y = 5$.

6)
$$y = \sin x$$
; $y = 0$; $x=0$; $x=\pi$.

B)
$$y = -x^2$$
; $x + y + 2 = 0$

$$y = x^3$$
; $y = 2x$; $y = x$

Практическое занятие 6.

Тема и содержание занятия: Решение простейших дифференциальных уравнений 1-го и 2-го порядка.

Цель занятия: отработка умений и навыков решения простейших дифференциальных уравнений 1-го и 2-го порядка.

уметь решать простейшие дифференциальные уравнения 1-го и 2-го порядка.

Продолжительность занятия – 2часа

Вариант 1

Являются ли данные функции решениями данных дифференциальных уравнений (для № 1-4).

1.
$$y = c_1 e^{-5x} + c_2 e^x$$
, $y'' + 4y' - 5y = 0$.

2.
$$y = c_1 e^x + c_2 x e^x$$
, $y'' + 2y' + y = 0$.

3.
$$y = \frac{8}{x}$$
, $y' = -\frac{1}{8}y^2$.

4.
$$y = e^{4x} + 2$$
, $y' = 4y$.

5. Решить задачу Коши:
$$y' = 4x^3 - 2x + 5$$
, $y(1) = 8$.

Решить следующие дифференциальные уравнения первого и второго порядка (для № 6-12).

6.
$$y' = \frac{1}{\cos^2 x} + x^4$$
.

7.
$$y' = -6y$$
.

8.
$$y' = \frac{x-1}{y^2}$$
.

$$9. \quad y' = \frac{y}{\sqrt{1 - x^2}} \ .$$

10.
$$y' - 3y + 5 = 0$$
.

11.
$$y'' - 7y' + 10y = 0$$
.

12.
$$y'' + 4y' + 4y = 0$$
.

Вариант 2

Являются ли данные функции решениями данных дифференциальных уравнений (для № 1-4).

1.
$$y = c_1 e^{-2x} + c_2 x e^{-2x}$$
, $y'' + 4y' + 4y = 0$.

2.
$$y = c_1 e^{3x} + c_2 e^x$$
, $y'' - y' - 6y = 0$.

3.
$$y = e^{3x} - 5$$
, $y' = 3y + 15$.

4.
$$y = \frac{5}{x}$$
, $y' = -y^2$.

5. Решить задачу Коши: $y' = 3x^2 - 2x + 6$, y(2) = 19.

Решить следующие дифференциальные уравнения первого и второго порядка (для № 6-12).

6.
$$y' = \frac{1}{\sqrt{1-x^2}} - x^7$$
.

7.
$$y' = 8y$$
.

$$8. \quad y' = \frac{2x}{y^2}.$$

9.
$$y' = \frac{y}{1+x^2}$$
.

10.
$$y' + 8y - 3 = 0$$
.

11.
$$y'' + 8y' + 16y = 0$$
.

12.
$$y'' - y' - 12y = 0$$
.

Практическое занятие 7

Тема и содержание занятия: Числовые ряды и исследования сходимости рядов.

Цель занятия: умение нахождения и исследования рядов на сходимость по признаку Даламбера и Лейбница.

уметь сформулировать и найти ряд, исследовать на сходимость по признаку Даламбера и Лейбница.

Продолжительность занятия – 4 часа

Вариант 1

1. Найти формулу общего члена:

$$\frac{1}{2+3} + \frac{1}{4+3} + \frac{1}{8+3} + \frac{1}{16+3} + \frac{1}{32+3} + \frac{1}{64+3} + \cdots$$

2. Написать первые пять членов последовательности : $a_n = \frac{2n-1}{4n^2+1}$

3. Исследовать ряд на сходимость по необходимому признаку сходимости:

$$\sum_{n=1}^{\infty} = \frac{1}{2n-1}$$

4. Исследовать ряд на сходимость по признаку Даламбера:

$$\sum_{n=1}^{\infty} = \frac{1}{n!}$$

Вариант 2

1. Найти формулу общего члена:

$$\frac{2x}{3^2\sqrt{3}} + \frac{4x^2}{5^2\sqrt{3^2}} + \frac{8x^3}{7^2\sqrt{3^3}} + \dots$$

- 2. Написать первые пять членов последовательности : $a_n = (-1)^{n+1} \frac{1}{n}$
- 3. Исследовать ряд на сходимость по необходимому признаку сходимости:

$$\sum_{n=1}^{\infty} = \frac{n+1}{2n+1}$$

4. Исследовать ряд на сходимость по признаку Даламбера :

$$\sum_{n=1}^{\infty} = \frac{5^n}{n^5}$$

Вариант 3

1. Найти формулу общего члена

$$1 + \frac{3}{2*3} + \frac{3^2}{2^2*5} + \frac{3^3}{2^3*7} + \dots$$

2. Написать первые пять членов последовательности:

$$a_n = (-1)^{n+1} \frac{1}{2^{m-1}}$$

3. Исследовать ряд на сходимость по необходимому признаку сходимости:

$$\sum_{n=1}^{\infty} \frac{3^n}{(n+2)! \cdot 4^n}$$

4. Исследовать ряд на сходимость по признаку Даламбера :

$$\sum_{n=1}^{\infty} \frac{n^2(n+1)}{5^n}$$

Практическое занятие 8

Цель занятия: умение нахождения вероятности по формуле полной вероятности событий. Формулы Байеса и Бернулли.

уметь сформулировать теорему сложения и умножения вероятностей событий. Вывести формулы полной вероятности, Байеса и Бернулли.

Продолжительность занятия – 4 часа

Вариант 1.

- 1. Сколько различных пятизначных чисел можно составить из цифр 1, 3, 5, 7, 9 при условии, что ни одна цифра в числе не повторяется?
- 2. В урне находиться 7 красных и 6 синих шаров. Из урны одновременно вынимают два шара. Какова вероятность того, что оба шара красные (событие A)?
- 3. В денежно-вещевой лотерее на каждые 10000 билетов разыгрывается 150 вещевых и 50 денежных выигрышей. Чему равна вероятность выигрыша, безразлично денежного или вещевого, для владельца одного лотерейного билета?

Вариант 2.

- 1. Сколько существует вариантов распределения трех призовых мест, если в розыгрыше участвуют 7 команд?
- 2. Девять различных книг расставлены наудачу на одной полке. Найти вероятность того, что четыре определенные книги окажутся поставленными рядом (событие C).
- 3. Вероятность того, что стрелок при одном выстреле выбьет 10 очков, равна 0,1; вероятность выбить 9 очков равна 0,3; вероятность выбить 8 или меньше очков равна 0,6. Найти вероятность того, что при одном выстреле стрелок выбьет не менее 9 очков.

Вариант 3.

- 1. Сколькими способами можно выбрать двух студентов на конференцию, если в группе 33 человека?
- 2. Из 10 билетов выигрышными являются 2. Определить вероятность того, что среди взятых наудачу 5 билетов, один выигрышный.
- 3. В партии из 10 деталей 8 стандартных. Найти вероятпость того, что среди наудачу извлеченных 2 деталей есть хотя бы одна стандартная.

Вариант 4.

1. Решить уравнения

a)
$$A_x^3 + C_x^{x-2} = 14x$$
. 6) $C_x^5 = C_x^7$.

- 2. Из колоды карт (52 карты) наудачу извлекают 3 карты. Найти вероятность того, что это тройка, семерка, туз.
- 3. В ящике 10 деталей, среди которых 2 нестандартных. Найти вероятность того, что в наудачу отобранных 6 деталях окажется не более одной нестандартной детали.

Практическое занятие 9.

Тема и содержание занятия: Вычисление математического ожидания и дисперсии случайной величины

Цель занятия: умений нахождения дисперсию случайных явления математического ожидания.

уметь найти математическое ожидание и дисперсию случайной величины

Продолжительность занятия – 4 часа

Вариант 1

1. Найти математические ожидания и дисперсии следующих случайных величин, заданных своими таблицами распределения:

x	-2	-1	0	1	2
p	0,1	0,2	0,3	0,3	0,1

2 . Законы распределения случайных величин X и $\ \, Y$ заданы таблицами:

X=

-2	-1	1	2
1	1	1	1
$\frac{\overline{6}}{6}$	$\frac{\overline{3}}{3}$	$\frac{\overline{3}}{3}$	- 6

У=

-2	-1	1	2
1	1	1	1
$\frac{\overline{4}}{4}$	$\frac{\overline{4}}{4}$	$\frac{\overline{4}}{4}$	$\frac{\overline{4}}{4}$

Найти дисперсию этих величин.

3. Найти математические ожидания и дисперсии следующих случайных величин, заданных своими таблицами распределения:

x	1	2	3	4	5
p	0,1	0,1	0,3	0,4	0,1

4. Найти математические ожидания и дисперсии следующих случайных величин, заданных своими таблицами распределения:

x	5	7	10	15
p	0,2	0,5	0,2	0,1

Вариант 2

1. Найти математические ожидания и дисперсии следующих случайных величин, заданных своими таблицами распределения:

X	100	150	200	250	300
p	0,4	0,3	0,2	0,05	0,05

2. Законы распределения случайных величин X и У заданы таблицами:

X=

-2	-1	1	2
1	1	1	1
5	3	3	5

У=

-2	-1	1	2
1	1	1	1
8	$\frac{\overline{8}}{8}$	8	8

Найти дисперсию этих величин.

3. Найти математические ожидания и дисперсии следующих случайных величин, заданных своими таблицами распределения:

x	1	2	3	4	5
p	0,2	0,1	0,5	0,3	0,1

4 . Случайная величина X имеет следующий закон распределения:

1	2	3	4	
0,3	$\frac{1}{4}$	$\frac{1}{8}$	0,5	

Найти МХ и DX.

Практическое занятие 10.

Тема и содержание занятия: Выполнение действий над комплексными числами, заданными в алгебраической и тригонометрической форме.

Цель занятия: отработка умений и навыков выполнения действий над комплексными числами, заданными в алгебраической и тригонометрической форме.

уметь выполнять действия над комплексными числами, заданными в алгебраической и тригонометрической форме.

Продолжительность занятия – 2 часа

Вариант 1

1. Даны комплексные числа: $z_1 = \overline{2} - 3i$, $z_2 = i + 1$, $z_3 = -1 - i$. Вычислите:

a) $z_1 + z_2$; 6) $z_1 + z_3$; B) $z_1 - z_2$; Γ) $z_2 - z_3$; Π) $z_1 \cdot z_2$; e) $z_3 \cdot z_2$.

2. Вычислите: a) (2 - i)(2 + i) - (3 - 2i) + 7; б) $(1 + i)^4$.

3. Найти частное комплексных чисел: a) $\frac{1}{i}$; б) $\frac{1}{1+i}$; b) $\frac{5-i}{i+2}$.

4. Представить следующие комплексные числа в тригонометрической форме:

a) -3; 6) -*i*; B) 1 + i; Γ) -1 + $i\sqrt{3}$.

5. Найти координаты точки M, изображающей комплексное число

 $Z = \frac{5i-2}{3i+1} + i + \frac{8i-3}{2-i}.$

6. Решите уравнения в комплексных числах:

a) $x^2 - 4x + 8 = 0$; 6) $x^2 + ix + 6 = 0$.

Вариант 2

1. Даны комплексные числа: $z_1 = 2 + i$, $z_2 = 3i + 1$, $z_3 = -2 - i$. Вычислите:

a) $z_1 + z_2$; 6) $z_1 + z_3$; B) $z_1 - z_2$; Γ) $z_2 - z_3$; Π) $z_1 \cdot z_2$; e) $z_3 \cdot z_2$.

2. Вычислите: a) (3+i)(3-i)-(6+2i)+7; б) $(i-1)^4$.

3. Найти частное комплексных чисел: a) $\frac{1}{i}$; б) $\frac{1}{1-i}$; в) $\frac{3+i}{i-2}$.

4. Представить следующие комплексные числа в тригонометрической форме:

a) -4; 6) *i*; B) 1- *i*; Γ) $-\sqrt{3} + i$.

5. Найти координаты точки M, изображающей комплексное число

$$Z = \frac{2-3i}{2i+1} - i + \frac{6i-4}{i+2}.$$

6. Решите уравнения в комплексных числах:

a)
$$x^2 - 8x + 17 = 0$$
;

$$6) x^2 + ix + 20 = 0.$$

Практическое занятие 11

Тема и содержание занятия:

Действия над матрицами. Нахождение определителей 2 и 3 порядка. Решение систем линейных уравнений матричным способом. Вычисления определителей по его свойствам.

Цель занятия:

формирование практических умений и навыков вычисления определителей и решение уравнений **уметь** выполнять действия над матрицами. Найти определителей 2 и 3 порядка.

Продолжительность занятия – 2 часа

Вариант 1

1. Найти
$$A_{\text{\tiny T}}$$
 матрицы A и вычислить определитель 3 порядка: $A = \begin{pmatrix} l & 3 & 4 \\ 2 & l & 6 \\ 0 & -l & 2 \end{pmatrix}$

2. Найти миноры и алгебраические дополнения M_{23} , M_{31} , A_{23} , A_{31} матрицы

$$A = \begin{pmatrix} 1 & 3 & 4 \\ 2 & 1 & 6 \\ 0 & -1 & 2 \end{pmatrix}$$

3. Разложить определитель по 2-ой строке
$$A = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 2 & 5 \\ 0 & -4 & 2 \end{pmatrix}$$
 4. Найти обратную матрицу A^{-1} ,если $A = \begin{pmatrix} 7 & 2 \\ 0 & -1 \end{pmatrix}$

4. Найти обратную матрицу
$$A^{-1}$$
, если $A = \begin{pmatrix} 7 & 2 \\ 0 & -1 \end{pmatrix}$

Вариант 2

1.Найти матрицу
$$A^2$$
 -2B , если : $A = \begin{pmatrix} -4 & l & 3 \\ l & -l & 5 \\ 3 & 0 & 2 \end{pmatrix}$ и $B = \begin{pmatrix} l & 3 & 5 \\ 0 & 4 & -l \\ 3 & -l & 2 \end{pmatrix}$

2. Умножить матрицы A *B,
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 2 & 2 \end{pmatrix}$

3. Даны матрицы

$$A = \begin{pmatrix} 5 & 0 & -2 \\ 1 & 3 & 4 \\ -3 & 1 & -5 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 1 & -2 \\ 0 & 5 & 3 \\ 2 & 4 & -1 \end{pmatrix}$$

Найти результативную матрицу $C = 2A - 3B + A^{T}$.

4. Вычислить определитель по правилу Саррюса (треугольника)

$$\Delta = \begin{vmatrix} -1 & 1 & 2 \\ 3 & 4 & -3 \\ -2 & 0 & 5 \end{vmatrix}.$$

Практическое занятие 12.

Тема и содержание занятия: Решение систем линейных алгебраических уравнений по формулам Крамера и по методу Гаусса.

Цель занятия:

Формирование умений и навыков применения формулы Крамера и метода Гаусса для решения систем линейных уравнений

уметь: решать линейные уравнения методом Крамера, решать практические задачи с применением метода Гаусса.

Продолжительность занятия – 2 часа

Вариант 1

1. Найти обратную матрицу A^{-1} , если $A = \begin{pmatrix} 7 & 2 \\ 0 & -1 \end{pmatrix}$

2.Решить систему уравнений по формулам Крамера и Гаусса ,
$$\begin{cases} 3x - 3y - 5z = 0 \\ 5x - 2y - 3z = 0 \\ x + y + z = 1 \end{cases}$$

19

3. Решить систему по формулам Крамера и Гаусса.

$$\begin{cases} 2x - 3y + z = 2\\ 2x + y - 4z = 9\\ 6x - 5y + 2z = 17 \end{cases}$$

Вариант 2

1. Вычислить определитель по правилу Саррюса (треугольника)

$$\Delta = \begin{vmatrix} -1 & 1 & 2 \\ 3 & 4 & -3 \\ -2 & 0 & 5 \end{vmatrix}$$

2. Найдите решение системы линейных уравнений методом Крамера и Гаусса.

$$\begin{cases} x_1 + x_3 = 4 \\ 2x_2 - x_3 = 1 \\ 3x_1 - x_2 = 1 \end{cases}$$

3. Решить систему методом Крамера и Гаусса.

$$\begin{cases} 3x_1 - 2x_2 + 4x_3 = 21 \\ 3x_1 + 4x_2 - 2x_3 = 9 \\ 2x_1 - x_2 - x_3 = 10 \end{cases}$$

Интерактивные практические занятия

1. Работа в группах:

Практическое занятие 2. «Нахождение производной функций»

Практическое занятие 5. «Вычисление неопределенных интегралов методом непосредственного интегрирования».

Практическое занятие 6. «Вычисление неопределенных интегралов методом замены переменной».

2. Решение ситуационных задач.

Практическое занятие 1. «Решение практических задач с нахождением первой и второй производной

3. Выступление в роли обучающего.

Практическое занятие 7. «Вычисление площадей фигур с помощью определенного интеграла».

4. Учебно-методическое и информационное обеспечение дисциплины

4.1. Основная литература

			. В	ния	Наличие	
№ п/п	Наименование	Авторы	Место	Год издания	в научно- техническойбиблиотеке,	в ЭБС, адрес в
				Го	ЭКЗ	сети Интернет
1.	Математика.	Богомолов	Москва,	2014Γ		rinteplier
	Дидактические	H.B.	Дрофа			
	задания					
2.	Сборник задач	Богомолов	Москва,	2015г		
	по математике	H.B.	Дрофа			
3.	Сборник задач	Шипачев	Москва,	2014Γ		
	по математике	B.C.	Академия			
4.	Конспект	Письменный	Москва,	2015Γ		
	лекций по	Д.Т.	Айрис-			
	высшей		пресс			
	математике					

4.2. Дополнительная литература

			Я	ния	Наличие	
№ п/п	Наименование	Авторы	Место	издания	в научно- техническойбиблиотеке,	в ЭБС, адрес в
11, 11			Л ИЗ	Год	экз	сети
						Интернет
1.	Дискретная	Спирина	М., Академия	2015г		
	математика	M.C.				
2.	Математика для	Яковлев	Новая волна	2014Γ		
	техникумов, в 2	Г.Н.				
	частях					

4.3. Интернет-ресурсы

- http://ru.wikipedia.org
 http://webmath.exponenta.ru
 http://webmath.exponenta.ru высшей математике
- http://www.mathprofi.ru
 http://www.mathnet.ru